
BIOINFORMATICS ORIGINAL PAPER Vol. 21 no. 8 2005, pages 1408–1414
doi:10.1093/bioinformatics/bti159

Sequence analysis

Evaluation of iterative alignment algorithms for multiple
alignment
Iain M. Wallace∗, Orla O’Sullivan and Desmond G. Higgins
The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland

Received on October 29, 2004; revised and accepted on November 15, 2004

Advance Access publication November 25, 2004

ABSTRACT
Motivation: Iteration has been used a number of times as an optim-
ization method to produce multiple alignments, either alone or in
combination with other methods. Iteration has a great advantage in
that it is often very simple both in terms of coding the algorithms and
the complexity of the time and memory requirements. In this paper, we
systematically test several different iteration strategies by comparing
the results on sets of alignment test cases.
Results: We tested three schemes where iteration is used to improve
an existing alignment. This was found to be remarkably effective and
could induce a significant improvement in the accuracy of alignments
from most packages. For example the average accuracy of ClustalW
was improved by over 6% on the hardest test cases. Iteration was
found to be even more powerful when it was directly incorporated into
a progressive alignment scheme. Here, iteration was used to improve
subalignments at each step of progressive alignment. The beneficial
effects of iteration come, in part, from the ability to get round the usual
localminimumproblemwithprogressivealignment. Thisability canalso
be used to help reduce the complexity of T-Coffee, without losing accur-
acy. Alignments can be generated, using T-Coffee, to align subgroups
of sequences, which can then be iteratively improved and merged.
Availability: All of the scripts are freely available on the web at http://
www.bioinf.ucd.ie/people/iain/iteration.html
Contact: iain.wallace@ucd.ie

INTRODUCTION
Multiple sequence alignment is an important first step in many
bioinformatic applications such as structure prediction, phylogen-
etic analysis and detection of key functional residues. The accuracy
of these methods relies heavily on the quality of the underlying
alignment.

Unfortunately the traditional multiple sequence alignment prob-
lem is NP-hard, which means that it is impossible to solve for
more than a few sequences. In order to align a large number of
sequences, many different approaches have been developed. For
example, SAGA (Notredame and Higgins, 1996) uses a genetic
algorithm to try and optimize a multiple sequence alignment given
an objective function. POA (Lee, 2003) builds a multiple alignment
using partial order graphs. MSA (Gupta et al., 1995) attempts to
generate an optimal multiple sequence alignment using a branch and
bound technique.

Progressive alignment (Taylor, 1987) is the most widely used heur-
istic to align a large number of sequences. The multiple alignment

∗To whom correspondence should be addressed.

is built up progressively by aligning pairs of sequences followed by
pairs of alignments/profiles. A guide tree determines the order in
which the sequences/alignments are combined with the most closely
related being aligned first. This technique is used in many differ-
ent multiple alignment packages such as MULTALIGN (Barton and
Sternberg, 1987), ClustalW (Thompson et al., 1994) and T-Coffee
(Notredame et al., 2000).

One of the problems with progressive alignment is that there is
no mechanism to correct mistakes introduced early in the alignment
process leading. Iteration was used to get round this problem by
Barton and Sternberg (1987) in their MULTALIGN program. Later,
PRRP (Gotoh, 1996) used a more highly developed iteration strategy
which allowed very accurate alignments. Here, a double iteration
loop was used to make the alignment, guide tree and sequence
weights mutually consistent. Two of the most accurate multiple
alignment packages at the moment, ProbCons (Do et al., 2004)
and Muscle (Edgar, 2004), refine the final multiple alignment using
iteration. ProbCons implements a random partitioning algorithm,
while Muscle implements a tree-based partitioning algorithm for the
iterations.

Hirosawa et al. (1995) investigated the performance of
different iteration strategies. They used a group of 30 pro-
tein kinase sequences as the basis for their evaluations. They
tested how effective each algorithm was at improving the overall
Sum of Pairs score for each alignment. We wanted to revisit
this important work, as iteration strategies are an effective
way of improving the performance of progressive alignment
programs. We investigated the most computationally simple iter-
ative algorithms, and benchmarked their performance against the
HOMSTRAD database of structure-based alignments (Mizuguchi
et al., 1998).

SYSTEM AND METHODS

Benchmarking
HOMSTRAD is a collection of high quality structure-based sequence align-
ments, which can be used as benchmark test cases. The October 2003 release
of the HOMSTRAD database was used, containing 1031 alignments of 2–41
sequences each.

Three subsets of the database were created and used as test sets:

HOM184: All alignments that contain four or more sequences. The set
contains 184 alignments.

HOM37: All alignments that contain four or more sequences and have less
than 25% average identity. This set contains the most demanding cases
in HOMSTRAD and contains 37 alignments.

1408 © The Author 2004. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

http://


Iterative alignment algorithms

HOM_large: All alignments that contain eight or more sequences. There are
33 alignments in this set.

The quality of an alignment was assessed by comparing it with the reference
alignment using the column score (CS) (Karplus and Hu, 2001) function of
the aln_compare programme (Notredame et al., 2000). The CS calculates the
number of identical columns in the reference alignment and the alignment to
be tested as a percentage of the number of columns in the reference.

Alignment programs
Five multiple alignment programs were used to generate alignments as inputs
for the alignment improvement algorithms. The programs used were T-
Coffee (Notredame et al., 2000), FFTNSI from the Mafft package (Katoh
et al., 2002), ClustalW (Thompson et al., 1994), Muscle (Edgar, 2004) and
ProbCons (Do et al., 2004).

ClustalW is the most widely used progressive alignment program. Muscle
also uses progressive alignment but with a novel function to align two profiles,
called the Log Expectation (LE) scoring function:

LExy = (
1 − f x

G

) (
1 − f

y

G

)
log

∑

i

∑

j

f x
i f

y

j pij

pipj

.

Here i and j are different amino acid types, pi is the background probability
of i, pij the joint probability of i and j being aligned. f x

i is the observed
frequency of amino acid type i in column x of the first profile, and f x

G is
the observed frequency of gaps at that column (similarly for column y in
profile 2). The factor

(
1−f x

G

)
encourages more highly occupied columns

to align to each other. This LE score is based on the log-average function
(van Ohsen and Zimmer, 2001), which has been shown to find more distantly
related homologues than the conventional profile alignment function used by
ClustalW when used in profile searches.

The FFT-NSI script from the Mafft package was used as it was reported
to give the best results of all scripts in the Mafft package on the BAliBASE
database (Katoh et al., 2002). This script calculates the tree for progressive
alignment using a fast Fourier transform (FFT) algorithm. It implements a
tree-dependent restricted partitioning alignment improvement algorithm, as
well as a normalized similarity matrix.

T-Coffee uses a consistency-based objective function to align sequences
along a guide tree. It tries to maximize the score between the final multiple
alignment and a library of pairwise local and global alignments. ProbCons
also uses a consistency-based function, but it uses a library of pairwise hidden
Markov models (HMM) instead. ProbCons is currently the most accurate
method as benchmarked on the BAliBASE database (Do et al., 2004).

ALGORITHMS
The performance of three iterative alignment improvement
algorithms, described by Hirosawa et al., were investigated.

Remove first (RF). In each iteration step a sequence is removed
from the alignment and realigned to the remaining alignment. If the
resulting alignment is better, it is kept and used as input for the next
iteration. The iteration cycle is terminated if the alignment score
converges, or if a limit of 2N2 iterations, where N is the number of
sequences, is reached.

Best first (BF). This algorithm tries to reduce the greedy nature of
the RF algorithm. In each iteration cycle every sequence is removed
and realigned to the rest. The alignment with the best score is kept as
input for the next iteration. Again, the iteration cycle is terminated if
the alignment score converges or if the limit of 2N2 profile–profile
alignments is reached. This algorithm is more time-consuming, in
general, than the RF algorithm as each iteration contains N profile–
profile alignments.

 Iteration

 Iteration

 Iteration 

1 

6 

2 

3 

4 

5 

Fig. 1. Schematic of the tree-based iterative algorithm. This is a progressive
alignment but incorporating iteration whenever alignments containing more
than two sequences are combined. Sequences 3 and 4 are aligned, as are
sequences 5 and 6. These two profiles are then aligned. This alignment is
then improved using an iterative algorithm. Sequence 2 is then aligned, again
followed by an iteration step. Sequence 1 is finally aligned followed by an
iteration step.

Random. The alignment is split randomly into two sets of
sequences, which are realigned. If the score improves, the result-
ing alignment is kept. 2N2 splits are carried out. This is the most
time-consuming algorithm implemented.

These algorithms have time requirements that are at worst O(N3)

as they involve at most 2N2 profile alignments each of which is
O(N). However in practice the complexity is often much lower.

Tree-based iterative algorithm. The alignment improvement
algorithms were also incorportated into a progressive alignment
strategy as shown in Figure 1. Every time two profiles are com-
bined, the resulting alignment is refined using one of the iterative
algorithms described previously.

Tree-based splitting algorithm. An extension of the tree-based
iterative algorithm, called tree-based splitting, was also implemen-
ted. The sequences are split into smaller subsets of a predefined
maximum size using a tree as in Figure 2. These subsets are aligned
using T-Coffee. The resulting alignments are combined using the
tree, with an iterative alignment refinement at each step. This
algorithm was designed as an attempt at using iteration to reduce
the running time of T-Coffee.

A fundamental step in each iteration step is the alignment of two
profiles. Two different programs were used to align profiles in this
experiment; ClustalW, which maximizes the Average Score, and
Muscle, which maximizes the LE score. The performance of each of
the algorithms using both the Average Score and the LE score was
benchmarked against the HOM184 and HOM37 datasets.

Another alignment improver program, RASCAL (Thompson
et al., 2003), was also used to improve the default alignments. RAS-
CAL implements a knowledge-based strategy to improve alignments.
The alignment is decomposed into reliable and unreliable regions.
Only the unreliable regions are modified, trying to maximize the
NorMD objective function (Thompson et al., 2001), a new objective
scoring function for multiple alignment.

1409



I.M.Wallace et al.

Fig. 2. Tree-based splitting schematic. The full tree on the left is used to
create three sets of sequences, which contain no more than half the total
number of sequences. These sets are then aligned using T-Coffee, and the
resulting alignments are combined using the tree on the right, with an iterative
refinement step at each node.

IMPLEMENTATION
Perl was used to implement all of the algorithms. Extensive use of
the BioPerl (http://www.bioperl.org) modules was made to produce
a series of three scripts.

A generic alignment improver (Iteration.pl). The steps involved in
this are:

(1) The alignment is scored using the Sum of Pairs (SP)
score by calling SAGA from the command line. SAGA
(Notredame and Higgins, 1996) is a multiple alignment
package, which uses a genetic algorithm to optimize an
objective function. It is possible to make SAGA score
an alignment with a command line argument. SAGA can
be downloaded from http://igs-server.cnrs-mrs.fr/∼cnotred/
Projects_home_page/saga_home_page.html

(2) The alignment is then split into two profiles. The split depends
on which algorithm is implemented.

(3) When a subset of sequences is removed from an alignment,
columns, which only contain gaps, can be formed in either
alignment. These are removed from each profile.

(4) An Average score or an LE score is used to align the two
profiles. The Average Score algorithm was implemented by
calling ClustalW v1.83, while the LE score was calculated by
calling Muscle v3.3. Any program that can align two profiles
from the command line can be used here.

(5) The new alignment is scored with SAGA, and if it is an
improvement on the initial alignment, the new alignment is
kept and the process (steps 1–5) continues.

(6) If there is no further improvement in the score, or if the limit
of 2N2 iterations is reached, the algorithm is terminated.

Splitting sequences based on a tree (TreebasedSplitting.pl). This
program takes in a rooted tree, a set of sequences and maximum
number of sequences per set. It then splits the sequences into groups
no bigger than the maximum number based on the input tree. It
outputs a new tree and a new set of sequence files.

Progressive alignment (UseGuideTree.pl). This program takes
in the tree output above and aligns the sequences as described by the
tree. If there are more than one sequences in a file, they are aligned
using T-Coffee. If the maximum number per group is set to 1, this
reduces to normal progressive alignment.

RESULTS

Alignment improver
Alignments generated by ProbCons (v1.06), T-Coffee (v1.83) and
Mafft (v3.88), using the default settings for each program, were
optimized by the three different iteration algorithms. The quicktree
option was used with ClustalW, as well as the default setting. The
results for this are labelled ‘ClustalW–Quicktree’. When ClustalW
is run using the default parameters, the guide tree that is used for
the progressive alignment is generated using dynamic programming
algorithm for pairwise alignment followed by the Neighbour Joining
method of Saitou and Nei (1987). When the quicktree option is used,
the guide tree is built using a much faster algorithm based on ktuples
(Wilbur and Lipman, 1983).

Two versions of the Muscle program were also used to generate
input alignments, v3.2 and v3.3. The difference between the two
versions is that the latter uses a tree-based partitioning algorithm to
improve the final alignment. This iterative refinement step scales as
O(N3) (Edgar, 2004).

The results for HOM184 are shown in Table 1. The numbers are
the average CS for the entire dataset. The best result for each method
is highlighted in bold, and the best percentage improvement in the CS
is shown in the right-hand column. The final row shows the average
CS for each alignment strategy over all methods. The significance of
the results was determined using the Wilcoxon Signed Rank test as
implemented in SPSS version 12.

Both the RF and BF algorithms using the LE scoring method
give the best overall performance. There is very little difference
between them for any method. They significantly improve the res-
ults for Muscle v3.3 (63.8 versus 63.1%), Muscle v3.2 (63.6 versus
61.8%), ClustalW (61.5 versus 59.9%), ClustalW-Quicktree (60.9
versus 59.3%) and FFTNSI (62.1 versus 59.7%). It is interesting to
note that when either the BF or RF algorithms refine the Muscle
v3.2 alignment, a slightly higher score is achieved than by using
Muscle v3.3, which includes a tree-based iteration strategy (63.6
versus 63.1%).

The LE scoring system nearly always outperforms the Average
Scoring system, irrespective of the refinement algorithm. However,
the Average Scoring system is still able to improve some methods,
such as ClustalW (61.5 versus 59.9%), Muscle v3.2 (62.6 versus
61.8%) and FFTNSI (61.4 versus 59.7%). The same overall per-
formance (the average of all the methods) as the knowledge-based
method RASCAL is achieved.

However, neither scoring system method is able to improve either
T-Coffee or ProbCons significantly. This is presumably because the
SP is not a perfect biological objective function, and improving
the score can actually make the alignment worse. The consistency-
based objective functions used by both T-Coffee and ProbCons tend
to provide better results than the SP objective function. Surpris-
ingly when the iteration step was removed from ProbCons, there
was no degradation in performance implying that the consistency-
based objective function is indeed the important part in the
program.

1410

http://www.bioperl.org
http://igs-server.cnrs-mrs.fr/


Iterative alignment algorithms

Table 1. Results from HOM184 for each of the iterative algorithms using both the Average Score, and LE to carry out the profile alignment and the RASCAL
alignment improver

Method Default RASCAL Average score Log expectation Summary
RF BF Random RF BF Random Best score (%) Improvement (%)

ProbCons 64.88 64.99 63.64∗ 63.46∗∗ 62.73∗ 64.69 65.00 64.27∗ 65.00 0.18
Muscle v3.3 63.12 62.96 62.84 62.72 62.56 63.77∗∗∗ 63.70∗∗ 63.39 63.77∗∗∗ 1.03
T-Coffee 62.87 62.86 62.40 62.11 62.83 63.24 63.38 62.70 63.38 0.81
Muscle v3.2 61.76 62.31 62.62∗ 62.57∗ 61.52 63.58∗∗∗ 63.57∗∗∗ 62.75∗∗ 63.58∗∗∗ 2.94
ClustalW 59.87 60.47 60.90∗∗∗ 61.08∗∗∗ 61.46∗∗∗ 61.54∗∗∗ 61.44∗∗∗ 60.99∗∗ 61.54∗∗∗ 2.80
FFT-NSI (Mafft) 59.65 60.92 61.23∗ 61.27∗ 61.42∗∗ 62.10∗∗∗ 62.05∗∗∗ 61.55∗∗∗ 62.10∗∗∗ 4.10
ClustalW–Quicktree 59.32 59.36 59.93∗ 60.16∗∗ 60.20∗∗ 60.70∗∗∗ 60.88∗∗∗ 60.57∗∗∗ 60.88∗∗∗ 2.63
Average 61.64 61.98 61.94 61.91 61.82 62.80 62.86 62.32

The values are all percentage columns correct (CS). Significant differences are marked: ∗p ≤ 0.05; ∗∗p ≤ 0.01; ∗∗∗p ≤ 0.001. The highest value for each row is highlighted
in bold.

Table 2. Results from HOM37 for each of the alignment improver algorithms

Method Default RASCAL Average score Log expectation Summary
RF BF Random RF BF Random Best score (%) Improvement (%)

ProbCons 41.84 41.65 38.01∗∗ 37.31∗∗ 37.73∗∗ 39.60∗ 41.33 39.86∗∗ 41.84 0
Muscle v3.3 38.46 37.46 37.96 38.21 37.21 39.42 39.08 38.26 39.42 2.49
T-Coffee 37.20 37.08 35.61∗∗ 34.15∗∗∗ 36.05 37.69 38.64 37.73 38.64 3.87
Muscle v3.2 35.88 35.58 37.35 36.94 35.20 38.61∗∗ 38.58∗ 38.14 38.61∗∗ 7.61
ClustalW 32.52 33.19 32.90 33.60 33.72 34.62∗∗∗ 34.55∗∗ 34.22∗ 34.62∗∗∗ 6.47
FFT-NSI (Mafft) 32.43 34.25 34.09 34.19 34.15 36.83∗ 36.41∗ 36.45 36.83∗ 13.56
ClustalW–Quicktree 29.88 31.13 31.00 31.88 32.64 32.47∗ 32.71∗ 32.20 32.71* 9.47
Average 35.46 35.76 35.50 35.18 35.24 37.04 37.33 36.69

Details are as in Table 1.

Table 2 shows the results on the HOM37 test set. The differ-
ence between the alignment programs and alignment improvement
strategies is more pronounced on this dataset. The order of the per-
formance of the programs is the same as in Table 1. Also, RASCAL
performs better on average than all of the algorithms that use the
Average Score profile method.

The relative order of algorithmic performance is BF ∼= RF >

Random Partitions. Interestingly the Random Partitions algorithm
performs worst even though it is the most computationally intensive
method. While the alignment improver algorithms do improve the
quality of most of the alignments, they do not cause a big change in
the ranking of the methods. Only the rank of FFT-NSI is improved.
ProbCons is still the best method overall even after improvement of
other methods.

FFTNSI is the method that is improved the most in both sets of
results (4.1% in Table 1 and 13.56% in Table 2). The default rank for
FFTNSI was surprisingly low (it ranked below ClustalW) as FFTNSI
was previously reported to perform as well as T-Coffee on the BAli-
BASE benchmark (Katoh et al., 2002). If FFTNSI was tuned to
the BAliBASE database, this would explain the low rank on this
dataset, and also the large relative improvement in the alignments
due to the iteration. We would like to point out that a new version
of Mafft (version 4.0) has been released and initial testing shows
it has much improved accuracy than the version evaluated in this
study.

An important consideration in evaluating the usefulness of itera-
tion algorithms is the number of iterations required for convergence.
The average number of iterations for each test set was plotted against
the number of sequences in the alignment. The RF algorithm always
required fewer iterations than the BF even though a similar level of
accuracy was obtained. The data points were fitted using the Table-
Curve package, and the trend lines are shown in Figure 3. The random
partitioning algorithm always requires 2N2 iterations and as such was
best fitted by line with an O(N2) equation. The BF algorithm was
fitted with a line that was O(N1.5), and the RF with a line that was
O(N). These graphs show the number of iterations. As each iteration
consists of a profile alignment which is O(N), the random partition-
ing is therefore always O(N3) overall. The remove first algorithm
is approximately O(N2) overall, and the best first algorithm is in
between.

Tree-based iteration
An alternative method of using iteration for multiple sequence align-
ment is to incorporate it into a progressive alignment strategy. This
is shown in Figure 1. At each node in the guide tree the alignment is
improved using an iterative algorithm.

Each of the algorithms were incorporated into a progressive align-
ment and benchmarked on the HOM184 and HOM37 datasets. The
guide tree output by ClustalW was used as the input tree for the
UseGuideTree script. Two different guide trees were generated for

1411



I.M.Wallace et al.

0

500

1000

1500

2000

2500

3000

3500

4 9 14 19 24 29 34 39

Number of Sequences

A
v

e
ra

g
e

 N
u

m
b

e
r 

o
f 

It
e

ra
ti

o
n

s

Remove First Fit Best First Fit Random Fit Remove First Best First Random

Fig. 3. A graph of the average number of iterations each algorithm requires before it converges, plotted against the number of sequences in each alignment in
HOM184.

Table 3. Results for the tree-based iterative algorithm for the HOM37 and HOM184 datasets

Average score Log expectation
RF BF Random RF BF Random Best score

HOM37
Quick tree 34.61∗ 36.35∗∗∗ 34.65∗ 39.40∗ 39.89∗ 37.48 39.89
Slow tree 34.03 34.62 32.99 38.62 39.05 35.66 39.05
HOM184
Quick tree 61.58∗∗ 61.93∗∗∗ 61.42∗∗ 63.45∗∗ 63.69∗∗∗ 62.47∗∗ 63.69
Slow tree 61.53∗∗ 61.70∗∗ 61.06 63.10∗ 63.27∗∗ 61.74 63.27

Two trees were generated by ClustalW, the default tree ‘Slow Tree’, and the quick tree. The significance has been calculated for the Average score quick tree versus ClustalW–quicktree;
Average Score slow tree versus ClustalW–slowtree; LE versus Muscle v3.2. The highest value for each row is highlighted in bold.

each alignment, the default ClustalW tree that is created using full
dynamic programming, and the ClustalW ‘–quicktree’ option. The
results are shown in Table 3. The significance of the results was
determined by using the Wilcoxon rank-sign test.

The BF algorithm performs best for both test sets on both
trees followed by the RF algorithm which performs slightly worse.
Surprisingly, the quick tree provides the best results, as it is computa-
tionally much simpler to calculate. It should be noted, however, that
the default settings of ClustalW perform better than the ClustalW
quicktree option, when run without iterative improvement.

When the BF algorithm with the Average Score is incorporated into
a progressive alignment, it outperforms the BF algorithm used as an
alignment improver, on the hardest dataset. ClustalW is improved
from 32.5 to 33.6% when BF is used as an alignment improver, and
is further improved to 34.6% when it is incorporated into a tree. A
similar effect is also observed for ClustalW ‘–quicktree’ (29.9 to 31.9
to 36.4%) and Muscle v3.2 with the LE function (35.9 to 36.9 and

finally up to 39.9%). The BF algorithm and the LE function achieve
a better score than Muscle v.3.3 (39.9 versus 38.5%) on the HOM37
dataset.

Tree-based splitting
T-Coffee cannot easily handle much more than 100 sequences of
average length. In an effort to reduce the running time and com-
putational expense of T-Coffee, the tree-based splitting algorithm
was developed. A set of sequences to be aligned is split into smaller
sets, which are aligned by T-Coffee. The resulting alignments are
combined using progressive alignment, as described in the previous
section.

The performance of this algorithm was tested using the
HOM_large dataset. The sequences were split using a tree gener-
ated by ClustalW using the ‘-quicktree’ option. This tree was chosen
as it is very quick to compute, and gave good performance in the
previous section.

1412



Iterative alignment algorithms

Table 4. Results for the tree-based splitting algorithm

Number of sequences Average score Log expectation score
Best-first No iteration Best-first No iteration

1 49.48 45.74 50.55 46.53
1/8 N 49.52 45.90 50.60 46.90
1/4 N 49.34 47.03 50.89 47.42
1/2 N 48.67 47.72 50.27 46.62
Default T-Coffee 48.91 48.91 48.91 48.91

A set of sequences is split into sub-sets. These sub-sets are aligned using T-Coffee, and
then combined. N is the total number of sequences in the original set, and the maximum
number of sequences in each sub-set is shown on the left.

(a) (b)

Fig. 4. Tree (a) is the balanced tree and (b) is a tree created by the UPGMA
algorithm. The maximum number of sequences in each set is N/2 or 10.
The balanced tree has three similar sized groups, which will be aligned by
T-Coffee, compared with the UPGMA tree, which has one very large group
and many much smaller groups. The balance tree maximizes the amount of
information used by T-Coffee to generate better alignments.

T-Coffee scores 48.9% columns correct on this HOM_large data-
set. The results for the tree-based splitting algorithm are shown in
Table 4. The importance of the iteration step is clear; without the iter-
ation step all of the splits perform worse than the default T-Coffee,
as would be expected. However, when the iteration step is used the
splitting algorithm improves on the default T-Coffee result. There is
an average difference of 3% between the results with iteration versus
the results without.

It was observed with many datasets that when the tree-based split-
ting algorithm was used, one relatively large set of sequences, which
contained the maximum number of sequences, and many small sets
of sequences were created. This is because the trees created by
ClustalW try to recreate the phylogenetic relationships between the
sequences, and are not always balanced (Fig. 4b). In order to cre-
ate a balanced tree, a modified version of the UPGMA algorithm
was used. The Protdist programme in the Phylip package was used
to create a distance matrix from a ClustalW–quicktree alignment.
The two sequences with the smallest distances are grouped together.

Table 5. Results for the tree-based splitting algorithm using the balanced
tree

Number of sequences Average score Log expectation score
BF No iteration BF No iteration

1 50.39 43.07 49.65 42.60
1/8 N 50.65 42.77 50.42 43.29
1/4 N 50.00 43.25 51.43 43.70
1/2 N 50.62 45.44 49.47 46.20
Default T-Coffee 48.91 48.91 48.91 48.91

A set of sequences is split into sub-sets. These sub-sets are aligned using T-Coffee, and
then combined. N is the total number of sequences in the original set, and the maximum
number of sequences in each sub-set is shown on the left. The highest value for each
scoring function is highlighted in bold.

Then the next two most related sequences are grouped together, and
so on until all of the sequences have been paired off. This process is
then repeated except the closest groups, instead of closest sequences,
are paired off with each other, until there is only one group left. An
example of the balanced tree is shown in Figure 4a.

Balanced trees as described above were used as input for the
tree-based splitting algorithm and the results are shown in Table 5.
Without the iteration step, the balanced tree performs worse than the
trees generated by ClustalW (Table 4) for all of the different split
sizes. The average disimprovement is 2.9%. However when the iter-
ation step is included, the results improve noticeably. The average
improvement caused by the iteration is 6.5% versus no iteration for
the balanced trees.

Using 1/4 N split and the LE score (51.4%), the tree-based
splitting algorithm outperforms both the default T-Coffee (48.9%)
and the tree-based algorithm (50.6%). This split would reduce the
complexity of T-Coffee by a factor of 16.

DISCUSSION
Iteration is a very simple, fast and effective way to improve multiple
alignment methods. Iteration can be used to improve existing soft-
ware with any objective function. It can also be incorporated into a
progressive alignment strategy to build alignments from scratch to
produce even better results.

We found that the LE function resulted in better alignments than
the more conventional Average function. Using the LE function in
conjunction with either the BF or RF algorithms, alignments from
a variety of different multiple alignment packages were improved.
Specifically, when the Muscle v3.2 alignment was refined with the
RF algorithm, similar results were obtained for Muscle v.3.3, which
has an O(N3) iteration step. We found the RF algorithm, on aver-
age, had a complexity of O(N2). We also attempted to use mixtures
and combinations of the iteration strategies but found no significant
improvement.

The performance of progressive alignment algorithms can be
improved by including iteration steps during the progressive align-
ment algorithm. We found the performance of ClustalW with the
quicktree option improved from 29.9 to 36.4% on the hardest test
cases. Similarly the performance of Muscle v3.2 could be improved
from 35.9 to 39.9%. This is also better than Muscle v3.3, which
includes an iteration step.

1413



I.M.Wallace et al.

An iteration algorithm also makes it possible to align a larger num-
ber of sequences with T-Coffee. The large set of sequences is split
into a few smaller sets of sequences, which are aligned by T-Coffee.
Using a progressive alignment algorithm the small alignments are
combined into the final alignment. With the iteration step the align-
ment quality is comparable to that of T-Coffee default. If a large set
of sequences is split into four equal sized smaller sets, the time spent
in T-Coffee is reduced by a factor of 16.

In a recent paper (Ebedes and Datta, 2004), the progressive align-
ment step was found to be a limiting step in parallelizing ClustalW.
This was mainly due to unbalanced guide trees. The balanced tree
described above could be used to overcome this problem if an
iteration step is included.

ACKNOWLEDGEMENTS
We are especially grateful to Manolo Gouy for a C program that roots
an unrooted tree. This work was funded by the Science Foundation
Ireland. The authors would like to thank the referees for their helpful
comments.

REFERENCES
Barton,G.J. and Sternberg,M.J. (1987) A strategy for the rapid multiple alignment of

protein sequences. Confidence levels from tertiary structure comparisons. J. Mol.
Biol., 198, 327–337.

Do,C.B., Brudno,M. and Batzoglou,S. (2004) PROBCONS: probabilistic consistency-
based multiple alignment of amino acid sequences. Abstract in the Nineteenth
National Conference on Artificial Intelligence AAAI, p. 703.

Ebedes,J. and Datta,A. (2004) Multiple sequence alignment in parallel on a workstation
cluster. Bioinformatics, 20, 1193–1195.

Edgar,R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res., 32, 1792–1797.

Gotoh,O. (1996) Significant improvement in accuracy of multiple protein sequence
alignments by iterative refinement as assessed by reference to structural alignments.
J. Mol. Biol., 264, 823–838.

Gupta,S.K., Kececioglu,J.D. and Schaffer,A.A. (1995) Improving the practical space
and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence
alignment. J. Comput. Biol., 2, 459–472.

Hirosawa,M., Totoki,Y., Hoshida,M. and Ishikawa,M. (1995) Comprehensive study on
iterative algorithms of multiple sequence alignment. CABIOS, 11, 13–18.

Karplus,K. and Hu,B. (2001) Evaluation of protein multiple alignments by SAM-T99
using the BAliBASE multiple alignment test set. Bioinformatics, 17, 713–720.

Katoh,K., Misawa,K. Kuma,K. and Miyata,T. (2002) MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res., 30,
3059–3066.

Lee,C. (2003) Generating consensus sequences from partial order multiple sequence
alignment graphs. Bioinformatics, 19, 999–1008.

Mizuguchi,K., Deane,C.M. Blundell,T.L. and Overington,J.P. (1998) HOMSTRAD: a
database of protein structure alignments for homologous families. Protein Sci., 7,
2469–2471.

Notredame,C. and Higgins,D.G. (1996) SAGA: sequence alignment by genetic
algorithm. Nucleic Acids Res., 24, 1515–1524.

Notredame,C., Higgins,D.G. and Heringa,J. (2000) T-coffee: a novel method for fast
and accurate multiple sequence alignment. J. Mol. Biol., 302, 205–217.

Saitou,N. and Nei,M. (1987) The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

Taylor,W.R. (1987) Multiple sequence alignment by a pairwise algorithm. Comput. Appl.
Biosci., 3, 81–87.

Thompson,J.D., Higgins,D.G. and Gibson,T.J. (1994) CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22,
4673–4680.

Thompson,J.D., Plewniak,F., Ripp,R., Thierry,J.C. and Poch,O. (2001) Towards a
reliable objective function for multiple sequence alignments. J. Mol. Biol., 314,
937–951.

Thompson,J.D., Thierry,J.C. and Poch,O. (2003) RASCAL: rapid scanning and correc-
tion of multiple sequence alignments. Bioinformatics, 19, 1155–1161.

van Ohsen,N. and Zimmer,R. (2001) Improving profile-profile alignments via log
average scoring. Proc. WABI, 2149, 11–26.

Wilbur,W.J. and Lipman,D.J. (1983) Rapid similarity searches of nucleic acid and protein
data banks. Proc. Natl Acad. Sci. USA, 80, 726–730.

1414


