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ABSTRACT
Motivation: We describe APDB, a novel measure for eval-
uating the quality of a protein sequence alignment, given
two or more PDB structures. This evaluation does not re-
quire a reference alignment or a structure superposition.
APDB is designed to efficiently and objectively benchmark
multiple sequence alignment methods.
Results: Using existing collections of reference multiple
sequence alignments and existing alignment methods,
we show that APDB gives results that are consistent
with those obtained using conventional evaluations. We
also show that APDB is suitable for evaluating sequence
alignments that are structurally equivalent. We conclude
that APDB provides an alternative to more conventional
methods used for benchmarking sequence alignment
packages.
Availability: APDB is implemented in C, its source code
and its documentation are available for free on request
from the authors.
Contact: cedric.notredame@europe.com

INTRODUCTION
We introduce APDB (Analyze alignments with PDB), a
new method for benchmarking and improving multiple se-
quence alignment packages with minimal human interven-
tion. We show how it is possible to avoid the use of ref-
erence alignments when PDB structures are available for
at least two homologous sequences in a test alignment.
Using this method it should become possible to system-
atically benchmark or train multiple sequence alignment
methods using all known structures, in a completely auto-
matic manner.

There are strong justifications for improving multiple
sequence alignment methods. Many sequence analysis

∗To whom correspondence should be addressed.

techniques used in bioinformatics require the assembly
of a multiple sequence alignment at some point. These
include phylogenetic tree reconstruction, detection of
remote homologues through the use of profiles or HMMs,
secondary and tertiary structure prediction and more re-
cently the identification of the nsSNPs (non synonymous
Single Nucleotide Polymorphisms) that are most likely to
alter a protein function. All of these important applica-
tions demonstrate the need to improve existing multiple
sequence alignment methods and to establish their true
limits and potential. Doing so is complicated, however,
because most multiple sequence alignment methods
rely on a complicated combination of greedy heuristic
algorithms meant to optimize an objective function.

This objective function is an attempt to quantify the
biological quality of an alignment. Almost every multiple
alignment package uses a different empirical objective
function of unknown biological relevance. In practice,
most of these algorithms are known to perform well on
some protein families and less well on others, but it is
difficult to predict this in advance. It can also be very
hard to establish the biological relevance of a multiple
alignment of poorly characterized protein families. See
Duret and Abdeddaim (2000) and Notredame (2002) for
two recent reviews of the wide variety of techniques that
have been used to make multiple alignments.

Given such a wide variety of methods and such poor
theoretical justification for most of them, the main option
for a rational comparison is systematic benchmarking.
This is usually accomplished by comparing the alignments
produced by various methods with ‘reference’ alignments
of the same sequences assembled by specialists with
the help of structural information. Barton and Sternberg
(1987) made an early systematic attempt to validate a mul-
tiple sequence alignment method using structure based
alignments of globins and immunoglobulins. Later on,
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Notredame and Higgins (1996) used another collection
of such alignments assembled by Pascarella and Argos
(1992). More recently, it has become common practice
to use BAliBASE (Thompson et al., 1999); a collection
of multiple sequence alignments assembled by specialists
and designed to systematically address the different types
of problems that alignment programs encounter, such as
the alignment of a distant homologue or long insertions
and deletions. In this work, we examined two such refer-
ence collections: BaliBase and Homstrad (Mizuguchi et
al., 1998), a collection of high quality multiple structural
alignments.

There are two simple ways to use a reference alignment
for the purpose of benchmarking (Karplus and Hu, 2001).
One may count the number of pairs of aligned residues
in the target alignment that also occur in the reference
alignment and divide this number by the total number of
pairs of residues in the reference. This is the Sum of Pairs
Score (SPS). The main drawback is that it is not very
discriminating and tends to even out differences between
methods. The more popular alternative is the Column
Score (CS) where one measures the percentage of columns
in the target alignment that also occur in the reference
alignment. This is widely used and is considered to be
a stringent measure of alignment performance. In order
to avoid the problem of unalignable sections of protein
sequences (i.e. segments that cannot be superimposed), it
is common practice to annotate the most reliable regions
of a multiple structural alignment and to only consider
these core regions for the evaluation. In BaliBase, the core
regions make up slightly less than 50% of the total number
of alignment columns.

Such use of multiple sequence alignment collections for
benchmarking is very convenient because of its simplicity.
However, a major problem is the heavy reliance on the
correctness of the reference alignment. This is serious
because, by nature, these reference alignments are at least
partially arbitrary. Although structural information can be
handled more objectively than sequence information, the
assembly of a multiple structural alignment remains a very
complex problem for which no exact solution is known.
As a consequence, any reference multiple alignment based
on structure will necessarily reflect some bias from the
methods and the specialist who made the assembly. The
second drawback is that given a set of structures there
can be more than one correct alignment. This plurality
results from the fact that a structural superposition does
not necessarily translate unambiguously into one sequence
alignment. For instance, if we consider that the residues
to be aligned correspond to the residues whose alpha
carbons are the closest in the 3-D superposition, it is
easy to imagine that sometimes an alpha carbon can
be equally close to the alpha carbons of two potential
homologous residues. Most structure based sequence

alignment procedures break this tie in an arbitrary fashion,
leading to a reference alignment that represents only one
possible arrangement of aligned residues.

This problem becomes most serious when the sequences
one is considering are distantly related (less than 30%
identity). Unfortunately, this is also the most interesting
level of similarity where most sequence alignment meth-
ods make errors and where it is important to accurately
benchmark existing algorithms. The APDB method that
we describe in this work has been designed to specifically
address this problem and remove, almost entirely, the
need for arbitrary decisions when using structures to
evaluate the quality of a multiple sequence alignment.

In APDB, a target alignment is not evaluated against a
reference alignment. Rather, we measure the quality of the
structural superposition induced by the target alignment
given any structures available for the sequences it con-
tains. By treating the alignment as the result of some sort
of structure superposition, we simply measure the fraction
of aligned residues whose structural neighborhoods are
similar. This makes it possible to avoid the most expen-
sive and controversial element of the MSA benchmark-
ing methods: the reference multiple sequence alignment.
APDB requires just three parameters. This is tiny if we
compare it with any reference alignment where each pair
of aligned residue can arguably be considered as a free pa-
rameter.

In this work we show how the APDB measure was
designed and characterized on a few carefully selected
pairs of structures. Among other things we explored its
sensitivity to parameter settings and various sequence
and structure properties, such as similarity, length, or
alignment quality. Finally, APDB was used to benchmark
known methods using two popular data sets: BaliBase and
Homstrad. These were either used as standard reference
alignments or as collections of structures suitable for
APDB.

It should be noted that there are several methods for
evaluating the quality of structure models and predictions
using known structures. The development of these has
been driven by the need to evaluate entries in the CASP
protein structure prediction competition and have been
reviewed by Cristobal et al. (2001). These all depend
on generating structure superpositions between the model
and the target and evaluating the quality of the match
using, for example, RMSD between the two or using some
measure of the number of alpha carbons that superimpose
well (e.g. MaxSub by Siew et al. (2000)). In principle,
this could also be used to benchmark alignment methods.
However, one serious disadvantage is the requirement for
a superposition, which is itself a difficult problem. A
second disadvantage is the way RMSD measures behave
with different degrees of sequence divergence and their
sensitivity to local or global alignment differences. We
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have carefully designed APDB so that on the one hand
it remains very simple but on the other hand it is able to
measure the similarity of the structural environments in a
manner that lends itself to measuring alignment quality.

SYSTEM AND METHODS
The APDB scoring function
APDB is a measure designed to evaluate how consistent
an alignment is with the structure superposition this
alignment implies. Let us imagine that A and B are two
homologous structures. If the structure of sequence A tells
us that the residues X and Z are 9Å apart, then we expect
to find a similar distance between the two residues Y and
W of sequence B that are aligned with X and Z. The
difference between these two distances is an indicator of
the alignment quality.

9Å
: :

A aaaaaaaaaaaXaaaaaaaaaaaaaaaZaaaaaaaaaaa

B bbbbbbbbbbbYbbbbbbbbbbbbbbbWbbbbbbbbbbb

: :

9Å?

In APDB we take this idea further by measuring the
differences of distances between X:Y (X aligned with Y)
and Z:W within a bubble of fixed radius centered around
X and Y. The bubble makes APDB a local measure,
less sensitive than a classic RMSD measure to the
existence of non-superposable parts in the structures being
considered. Furthermore it ensures that a bad portion of
the alignment does not dramatically affect the overall
alignment evaluation. The typical radius of this bubble is
10Å, and it contains 20 to 40 amino acids. We consider
two residues to be properly aligned if the distances from
these two residues to the majority of their neighbors within
the bubble are consistent between the two structures. In
other words, we check whether a structural neighborhood
is supportive of the alignment of the two residues that sit
at its center. This can be formalized as follows:

X : Y and is a pair of aligned residues in the alignment
N Number of aligned pairs of residues
d(X, Z) is the distance between the Cα of the two

residues X and Z within one structure.
Brad is the radius of the bubble set around residues X

and Y (Brad = 10 Å by default).
T1 is the maximum difference of distance between

d(X, Z) and d(Y, W ) (T 1 = 1 Å by default).
T2 is the minimal percentage of residues that must

respect the criterion set by T 1 for X and Y to be
considered correctly aligned (70% by default).

consideredX :Y (Z : W) is equal to 1 if the pair Z : W is
in the bubble defined by pair X : Y

correctX :Y (Z : W) is equal to 1 if d(X, Z) and d(Y,W)
are sufficiently similar as set by T 1.

aligned(X : Y) is equal to 1 if most pairs Z : W in the
X : Y bubble are correct as set by T 2.

consideredX :Y (Z : W ) = 1

if d(X, Z) < Brad and d(Y, W ) < Brad (1)

correctX :Y (Z : W ) = 1

if d(X, Z) < Brad and d(Y, W ) < Brad (2)

and |d(X, Z) − d(Y, W )| < T 1

aligned(X : Y) = 1

if

∑
Z :W CorrectX :Y (Z : W )

∑
Z :W ConsideredX :Y (Z : W )

× 100 > T 2 (3)

Finally, the APDB measure for the entire alignment is
defined as:

APDB Score =
∑

X :Y Aligned(X : Y )

N
(4)

Given a multiple alignment of sequences with known
structures, the APDB score can easily be turned into a sum
of pairs score by summing the APDB score of each pair of
structures and dividing it by the total number of sequence
pairs considered.

Design of a benchmark system for APDB
In order to study the behavior of APDB, we used two es-
tablished collections of reference alignments: BAliBASE
(Thompson et al., 1999) and HOMSTRAD (Mizuguchi et
al., 1998). First we extracted 9 structure based pair-wise
sequence alignments from HOMSTRAD, which we refer
to as HOM 9. These reference alignments were chosen
so that their sequence identities (as measured on the
HOMSTRAD reference alignments) evenly cover the
range 17 to 90%. These alignments are between 200 and
300 residues long and are used for detailed analysis and
parameterization of APDB. The PDB names of the pairs
of structures are given in the figure legend for Figure 2.
Next, in order to assemble a discriminating test set, we
selected the most difficult alignments from HOMSTRAD.
We chose alignments which had at least 4 sequences and
where the average percent identity was 25% or less. This
resulted in a selection of 43 alignments, which we refer
to as HOM 43. BAliBASE version 1 has 141 alignments
divided into 5 reference groups. We chose all alignments
where 2 or more of the sequences had a known structure.
This resulted in a subset of 91 alignments from the
first 4 reference groups of BAliBASE which we refer
to as BALI 91. Minor adjustments had to be made to
ensure consistency between BAliBASE sequences and the
corresponding PDB files. HOM 43 and BALI 91 test sets
are available in the APDB distribution.
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Fig. 1. Tuning of Brad, the bubble radius using sub-optimal
alignments of two sequences from HOM 9 Each graph represents
the correlation between CS and APDB for 4 different Bubble Radius
values (Brad of 6, 8, 10 and 12Å). In each graph, each dot represents
a sub-optimal alignment from HOM 9, sampled from the genetic
algorithm.

Generation of multiple alignments
We compared the performance of APDB on two different
multiple alignment methods. We tested the widely used
ClustalW version 1.81 (Thompson et al., 1994). We also
tested the more recent T-Coffee version 1.37 (Notredame
et al., 2000) using default parameters.

Generation of suboptimal alignments
In order to evaluate the sensitivity of APDB to the
quality of an alignment, we used an improved version
of the genetic algorithm SAGA (Notredame and Higgins,
1996) in order to generate populations of sub-optimal
alignments. In each case a pair of sequences was chosen
in HOM 9 and 50 random alignments were generated
and allowed to evolve within SAGA so that their quality
gradually improved (as measured by their similarity with
the HOMSTRAD reference alignment). Ten alignments
were sampled at each generation in order to build a
collection of alternative alignments with varying degrees
of quality. This algorithm was stopped when optimality
was reached, thus typically yielding collections of a few
hundred alignments.

A second method for generating sub-optimal alignments
was based on the PROSUP package (Lackner et al.,
2000). PROSUP takes two structures, makes a rigid body
superposition and generates all the sequence alignments
that are consistent with this superposition, thus producing
alternative alignments that are equivalent from a structural
point of view. Typically PROSUP yields 5 to 25 alternative
alignments within a very narrow range of RMSDs.

Comparison of APDB with other standard
measures
In order to compare the APDB measure with more con-
ventional measures, we used the Column Score (CS) mea-
sure as provided by the aln compare package (Notredame
et al., 2000). CS measures the percentage of columns in a
test alignment that also occur in the reference alignment.
In BAliBASE this measure is restricted to those columns
annotated as core region in the reference. Although alter-
native measures have recently been introduced (Karplus
and Hu, 2001), CS has the advantage of being one of the
most widely used and the simplest method available today.

RESULTS AND DISCUSSION
Fine tuning of apdb
Three parameters control the behaviour of APDB: Brad
(the bubble radius), T1 (the difference of distance thresh-
old) and T2 (the fraction of the bubble neighbourhood that
must support the alignment of two residues). We exhaus-
tively studied the tuning effect of each of these param-
eters using HOM 9 and parameterised APDB so that its
behaviour is as consistent as possible with the behaviour
of CS on HOM 9.

In Figure 1 we show the relationship between CS
and APDB for 250 sub-optimal alignments generated by
genetic algorithm for one of the 9 test cases from HOM 9
over 4 different settings of Brad, the Bubble Radius. While
the two scoring schemes are in broad agreement, the
correlation improves dramatically as Brad increases. This
trend can be summarised using the correlation coefficient
measured on each of the graphs similar to those shown in
Figure 1. The overall results for all nine HOM 9 test cases
are shown in Figure 2. These results clearly show that the
behaviour of APDB is best for values of Brad of 10 Å or
above. With these values the level of correlation between
CS and APDB increases and so does the agreement across
all 9 test cases. We chose 10 Å as the default value in
order to ensure a proper behaviour while retaining as much
as possible the local character of the measure. Given the
default value of 10 Å for Brad, we examined T1 and T2 in
a similar fashion and found the most appropriate values as
1 Å for T1 and 70% for T2.
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Fig. 2. Correlation between the Column Score measure (CS) and APDB on HOM 9 Each HOM 9 test set is labelled according to its
average percent sequence identity as measured on the HOMSTRAD reference. The horizontal axis indicates the value of Brad. The vertical
axis indicates the correlation coefficient between CS and APDB as measured on a population of sub-optimal alignments similar to the ones
in Figure 1. Each dot indicates a correlation coefficient measured on one HOM 9 test set, using the indicated value of Brad. Each HOM 9
test set is an alignment between two sequences whose PDB names are as follows: 17: 2gar versus 1fmt, 18: ljfl versus lb74, 33: 1isi versus
11be, 43: 2cev versus 1d3v, 52: 1aq0 versus 1ghs, 63: 2gnk versus 2pii, 71: 1hcz versus 1cfm, 82: 1dvg versus 1qq8, 89: 1k25 versus 1qme.

Sensitivity of APDB to sequence and structure
similarity
It is important to verify that the behaviour of APDB
remains consistent across a wide range of sequence
similarity levels. It is especially important to make sure
that when two different alignments of the same sequences
are evaluated, the best one (as judged by comparison with
the HOMSTRAD reference) always gets the best APDB
score. In order to check for this, we used the genetic
algorithm to generate sub-optimal alignments for each test
case in HOM 9. In each case, we gathered a collection
of 250 sub-optimal alignments with CS scores of 0–40%,
41–60%, 61–80% and 81–100%. The CS score measures
the agreement between an alignments and its reference
in HOMSTRAD. We then measured the average APDB
score in each of these collections. Each of these measures
corresponds to a dot in Figure 3 where vertically aligned
series of dots correspond to different measures made on
the same HOM 9 test set.

Figure 3 clearly shows that regardless of the percent
identity within the HOM 9 test set being considered,
alignments with better CS scores always correspond to a
better APDB score (this results in the lines never crossing
one another on Fig. 3). We did a similar analysis using
the RMSD as measured on the HOMSTRAD alignment
in place of sequence identity. The behaviour was the

same and clearly indicates that APDB gives consistent
results regardless of the structural similarity between the
structures being considered.

Suitability of APDB for analysing sub-optimal
alignments
Collections of sub-optimal alignments for each of the
nine HOM 9 test sets were generated using SAGA and
evaluated for their CS scores and APDB scores. These
results were pooled and are displayed on the graph
shown on Figure 4. This Figure indicates good agreement
between the CS and the APDB score regardless of the
level of optimality within the alignment being considered.
It suggests that APDB is informative over the complete
range of CS values. It also confirms that APDB is not ‘too
generous’ with sub-optimal alignments

We also checked whether sequence alignments that
are structurally equivalent obtain similar APDB scores
even if they are different at the sequence level. For this
purpose, we used PROSUP (Lackner et al., 2000). Given
a pair of structures, PROSUP generates several alignments
that are equally good from a structure point of view
(similar RMSD), but can be very different at the sequence
level (different Column Score). We manually identified
two such test sets in HOMSTRAD and the results are
summarized in Table 1. For each of these two test sets, we
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Fig. 3. Estimation of the sensitivity of APDB to sequence identity On this graph, each set of vertically aligned dots corresponds to a single
HOM 9 test set. The 9 HOM 9 test sets are arranged according to their average identity (17–89%, see Figure 2). Each dot represents the
average APDB score of a population of 250 sub-optimal alignments (generated by genetic algorithm) with a similar CS score (binned in four
groups representing CS of <40%, 41–60%, 61–80% and 81–100%) generated for one of the 9 HOM 9 test sets.

Fig. 4. Correlation between CS and APDB on the complete
HOM 9 test set Each dot corresponds to a sub-optimal alignment
of one of the HOM 9 test cases, generated by genetic algorithm.
For each alignment the graph plots the APDB score against its CS
counterpart.

selected in the output of PROSUP two alignments (aln1
and aln2) to which PROSUP assigns similar RMSDs. aln1
is used as a reference and therefore gets a CS score of
100 while the CS score of the second alignment (aln2) is
computed by direct comparison with its aln1 counterpart.

Table 1. Evaluating PROSUP suboptimal alignments with APDB

Set St1 St2 ALN RMSD CS APDB

1 1e96B 1a17 aln1 1.45Å 100.0 80.2
1e96B 1a17 aln2 1.50Å 65.6 80.7

2 1cd8 1qfpa aln1 2.95Å 100.0 18.7
1cd8 1qfpa aln2 2.95Å 55.1 17.9

Set indicates the test set index, St1 and St2 indicate the two structures being
aligned by PROSUP, ALN indicates the alignment being considered,
RMSD shows the RMSD associated with this alignment, CS indicates its
CS score, with the CS score of aln1 alignments being set to 100 because
they are used as references. APDB indicates the APDB score.

In both test sets, using aln1 as a reference for the
CS measure leads to the conclusion that aln2 is mostly
incorrect (cf. CS column of Table 1). This is not true since
these alignments are structurally equivalent as indicated
by their RMSDs. In such a situation, APDB behaves much
more appropriately and gives to each couple aln1/aln2
scores that are nicely consistent with their RMSD, thus
indicating that APDB can equally well reward two sub-
optimal alignments when these are equivalent from a
structural point of view.

Using APDB to benchmark alignment methods
Table 2 shows the average CS and APDB scores for the
test sets in each of the four Bali 91 categories being
considered here and in HOM 43. The highest scores in
all cases, for both measures, come from the reference
column (the last column). This is desirable providing
the reference alignments really are consistent with the
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Table 2. Correlation between APDB and CS on BaliBase and Homstrad

Set N ClustalW T-Coffee Reference
CS APDB CS APDB CS APDB

B91 R1 35 70.1 59.9 67.7 58.3 100 64.7
B91 R2 23 32.7 26.6 33.9 47.1 100 55.2
B91 R3 22 46.4 38.5 48.6 46.9 100 53.2
B91 R4 11 52.0 59.5 52.5 64.5 100 65.7

H43 43 35.4 60.2 38.9 61.6 100 72.9

Test Set: indicates the test set being considered, either one of the
BaliBase 91 references (B91R#) or HOM 43(H43), a subset of
HOMSTRAD. N indicates the number of test alignments in this category.
ClustalW indicates a set of measures made on alignments generated with
ClustalW. T-Coffee indicates similar measures made on T-Coffee generated
alignments. Reference indicates measures made on the reference alignments
as provided in BaliBase or in Homstrad. CS columns are the Column Score
measures while APDB indicates similar measures made using APDB.

underlying structures. If we now compare the columns
two by two, we find that every variation on CS from one
column to another agrees with the corresponding variation
of APDB. For instance in row 1 (Bali 91 Ref1), when
T-Coffee/CS is lower than ClustalW/CS, T-Coffee/APDB
is also lower. This observation is true for the whole
table, regardless of the pair of results being considered.
When considering the 134 alignments one by one, this
observation remains true in more than 70 % of the cases.

CONCLUSION
This work introduces APDB, a novel method that makes
it possible to evaluate the quality of a sequence alignment
when two or more tertiary structures of the sequences it
contains are available. This method does not require a ref-
erence alignment and it does not depend on any complex
procedure such as structure superposition or sequence
alignment. We show here that APDB sensitivity is com-
parable with that of CS, a well-established measure that
compares a target alignment with a reference alignment.
Our results also indicate that APDB can discriminate
better than CS between structurally correct sub-optimal
sequence alignments and structurally incorrect sequence
alignments, even when the structures being considered are
distantly related.

Apart from the cost associated with their assembly, a
serious problem with reference alignments is that they
need to be annotated to remove from the evaluation
regions that correspond to non-superposable portions of
the structures. This is necessary because otherwise these
regions (whose alignment cannot be trusted) will bias a
CS evaluation toward rewarding the arbitrary alignment
conformation displayed in the reference. Table 2 illustrates
well the fact that such an annotation is not necessary
in APDB. In our measure, thanks to the combination of

local evaluation and the absence of a reference alignment,
the only possible effect of non-superposable regions is
to decrease the proportion of residues found aligned in
a structurally optimal sequence alignment, thus yielding
scores lower than 100 in the case of distantly related
structures.

A key advantage of APDB is its simplicity. It only re-
quires three parameters and a few PDB files. Most impor-
tantly, APDB does not require any arbitrary manual in-
tervention such as the assembly of a reference alignment.
In the short term, all the existing collections of reference
alignment could easily be integrated and extended with
APDB. In the longer term, APDB could also be used to
evaluate and compare existing collections of alignments
such as profiles, when structures are available.
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