
Optimization of ribosomal RNA profile alignments
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Motivation: Large alignments of ribosomal RNA sequences
are maintained at various sites. New sequences are added to
these alignments using a combination of manual and
automatic methods. We examine the use of profile alignment
methods for rRNA alignment and try to optimize the choice
of parameters and sequence weights.
Results: Using a large alignment of eukaryotic SSU rRNA
sequences as a test case, we empirically compared the
performance of various sequence weighting schemes over a
range of gap penalties. We developed a new weighting
scheme which gives most weight to the sequences in the
profile that are most similar to the new sequence. We show
that it gives the most accurate alignments when combined
with a more traditional sequence weighting scheme.
Availability: The source code of all software is freely
available by anonymous ftp from chah.ucc.ie in the directory
/home/ftp/pub/emmet, in the compressed file PRNAA.tar.
Contact: emmet@chah.ucc.ie, des@chah.ucc.ie

Introduction

Ribosomal RNA sequences (rRNA) are widely used to esti-
mate the phylogenetic relatedness of groups of organisms (e.g.
Sogin et al., 1986; Pawlowski et al., 1996), especially that of
the small subunit (SSU rRNA). The SSU rRNA has been se-
quenced from thousands of different species and large align-
ments are maintained at several sites (Maidak et al., 1997; Van
de Peer et al., 1997). The alignments are large and complex
and the addition of new sequences is a demanding task, either
for the alignment curators or for individuals who wish to align
new sequences with existing aligned sequences. In simple
cases, automatic alignment programs such as Clustal W
(Thompson et al., 1994a) may be used to align groups of
closely related sequences or as a prelude to manual refine-
ment. There may be large stretches of unambiguous alignment
with high sequence identity which may be useful for phyloge-
netic purposes. The fully automated, accurate alignment of
rRNA sequences remains a difficult problem, however.

In principle, one can use profile alignment methods (Grib-
skov, 1987) which use dynamic programming algorithms
(Needleman and Wunsch, 1970, Gotoh, 1982) to align a new
sequence against an existing ‘expert’ alignment. For example,

one could take an alignment of all SSU rRNA sequences from
one of the rRNA collections and one could use this as a guide;
aligning each new sequence in turn, treating the large align-
ment as a profile. This approach has the advantage of simplic-
ity and speed but the final accuracy may be limited by the lack
of any ability to use secondary structure information. The
RNALIGN approach (Corpet and Michot, 1994) or the sto-
chastic context free grammar approach (Eddy and Durbin,
1994; Sakakibara et al., 1994) provide elegant methods for the
alignment of rRNA sequences taking both primary sequence
and secondary structure into account. These methods, how-
ever, are very demanding in computer resources and cannot
deal easily with pseudoknots so that their immediate applica-
tion to the alignment of SSU rRNA sequences is not trivial.

In this paper, we examine, empirically, the effectiveness of
profile alignment methods for the alignment of RNA se-
quences. We remove test sequences from existing ‘expert’
alignments and measure the extent to which they can be re-
aligned with the original alignment, automatically. We use the
eukaryotic SSU rRNA sequences from Van de Peer et al.
(1997) as a test case. For a range of test sequences, we measure
the number of positions that can be correctly realigned over a
range of different parameters (gap opening and gap extension
penalties).

Sequence weighting has been shown to increase the reliabil-
ity of profile alignments using amino acid sequences (Thomp-
son et al., 1994b). This can be used to give less weight to
clusters of closely related sequences and increased weight to
sequences with no close relatives in order to counteract the
effect of unequal sampling across a phylogenetic tree of poss-
ible sequences. We examine the effectiveness of one com-
monly used scheme (Thompson et al., 1994b). We also pro-
pose a new weighting scheme which is designed to give in-
creased weight to those sequences in the profile (reference
alignment) which are closest (highest sequence identity) to the
new sequence being aligned. If a new mammalian sequence
is being aligned, for example, it makes most sense to give a
high weight to other mammalian sequences and decreasing
weights to sequences that are more and more distantly related.

Some sections of SSU rRNA sequences are from regions
whose secondary structure is conserved across many species.
These conserved, ‘core’, regions are relatively easy to align
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with high accuracy but are interspersed with less conserved
regions that may be very difficult to align. We empirically de-
termine which regions of the eukaryotic reference alignment
can be aligned with high accuracy by a simple jack-knife ex-
periment. We remove each sequence, one at a time, and try to
realign it with the rest. It is then a simple matter to count how
often each nucleotide of each sequence is correctly realigned.
This gives a definition of conserved core regions that is purely
empirical and which can be used by users to delimit regions
of alignment which can be safely used in phylogenetic re-
search.

Finally, we examine the effect of G+C content of each se-
quence on the accuracy of alignment. Sequences of high or
low G+C may be expected to be more difficult to align than
those with more balanced nucleotide compositions.

System and methods

Small subunit ribosomal RNA

An alignment of eukaryotic, nuclear SSU rRNA sequences
(that dated May 6, 1997) was obtained from the World Wide
Web server at http://www-rrna.uia.ac.be/ssu/index.html (Van
de Peer et al., 1997). After removal of columns which consist
only of gaps, the two incomplete sequences of Butomus um-
bellatus and the unaligned sequence Babesia bovis 4 the align-
ment contains 1517 sequences and is 5370 characters long.
Individual sequences vary widely in length, from<1300 nu-
cleotides to >2500.

Sixteen test sequences were removed from and realigned
with the reference alignment in order to measure the accuracy
with which it was possible to recreate their original alignment.
The sequences used were Drosophila melanogaster, Xenopus
laevis, Homo sapiens, Caenorhabditis elegans, Saccharo-
myces cerevisiae, Oryza sativa, Dictyostelium discoideum,
Euglena gracilis, Ammonia beccarii, Physarum polycepha-
lum, Entamoeba histolytica 1, Vahlkampfia lobospinosa,
Giardia sp., Naegleria gruberi, Hexamita sp. and Trypanoso-
ma brucei. These sequences were chosen based on a phyloge-
netic tree of all the sequences in the alignment, in order to give
a spread of test cases over a wide range of different positions
in the tree. Re-alignment was carried out over a range of gap
penalties and using a number of sequence weighting schemes
as described below.

Dynamic programming

The reference alignment was converted into a profile (Grib-
skov et al., 1987) which contains information on the fre-
quency of each residue and gaps at each position. The test
sequences were aligned with this using a dynamic program-
ming algorithm (Needleman and Wunsch, 1970). We used
Gotoh’s algorithm (Gotoh, 1982) and maximized the similar-
ity between the sequence and the profile. A homogenous col-

umn in the profile (just one of the four residues), with no gaps
will get a score of 1.0 when aligned with the same residue in
the test sequence and a score of 0 otherwise. Other columns
score in proportion to the frequency of each of the four residue
types. In positions in the profile where one or more of the
sequences has a gap, gaps were treated as a class of residue for
frequency calculations. Other methods have been proposed
for generating profiles using the natural logarithms of residue
frequencies which may be normalized by overall residue fre-
quencies to give log-odds scores (see Henikoff and Henikoff,
1996 for a review). We carried out some tests using the latter
scheme and found that performance was comparable although
slightly inferior to that using simple frequencies. Therefore we
only present results obtained using the frequencies.

Gap penalties

A range of gap opening and extension penalties were used in
alignment generation. For each test sequence and each
weighting scheme, a total of 81 alignments were carried out.
Gap opening penalties were used ranging from 1 to 9 in in-
crements of 1, and gap extension penalties ranging from 0.1
to 0.9 in increments of 0.1. This range of ratios between gap
penalties and residue match scores was chosen as it en-
compasses values empirically shown to give alignments of
biological relevance. Terminal gaps were penalized solely
with an extension penalty.

Position-specific gap opening penalties were derived from
the frequency of gaps at each position along the alignment. At
each position, a value equal to the number of residues (non-
gap characters) in the column divided by the number of se-
quences in the alignment was derived. This value was then
multiplied by the gap opening penalty, as taken from the range
above, to give a specific gap opening penalty at each position.
This gives gap opening penalties which are higher in positions
at which residues mostly occur in comparison with positions
which are occupied mostly by gaps.

Sequence weighting

By default, each sequence in the existing alignment will have
an equal effect on the alignment of new sequences with the
profile. If additional information is available concerning the
relationships of sequences within the alignment to each other
and to the sequence being aligned, this may not be optimal.
For example, if a new sequence is identical to a sequence al-
ready in the alignment, the correctly aligned position of each
residue in the new sequence could be deduced solely from that
one identical sequence, and no information concerning the
other sequences is necessary. Further, sampling bias can lead
to an unequal representation of taxa within the alignment (e.g.
there might be very many sequences from some taxa and very
few from others), and it is possible to use sequence weighting
to correct for this also. Three different weighting schemes
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Fig. 1. Tree of the sequences that were used as test cases. The weights for these sequences under different weighting schemes are given in Table 1.

were applied to the sequences in the SSU rRNA alignment,
and compared with the default of equal weights.

The first weighting scheme, referred to as tree-based
weights, is based on a phylogenetic tree of the sequences in
the alignment. A neighbour-joining tree (Saitou and Nei,
1987) of all the sequences in the profile was generated using
the DNADIST and NEIGHBOR programs of the PHYLIP
package (Felsenstein, 1989). Weights were then derived
from the branch lengths as described by Thompson et al.
(1994b). These weights are then normalized to have a mean
of 1.0. This gives a total weight for the profile equal to that
where each sequence is weighted equally, which is necessary
in order to keep the effects of changing gap penalties congru-
ent across the different schemes. The general effect of these
tree-based weights is to downweight sequences with many
close relatives in order to prevent the more densely populated
regions of the tree exerting a disproportionate effect on the
alignment of sequences from other regions of the tree.

The second weighting scheme is based on the level of simi-
larity between the sequence being aligned and each individ-
ual sequence in the alignment, and is referred to as identity-
based weighting. The new sequence is first aligned with the
profile using equal weights. A distance is then calculated be-
tween the new sequence and each other sequence in the
alignment equal to the mean number of differences per site
in this initial approximate alignment. This is percent differ-
ence divided by 100 and there is no correction for multiple
hits or unequal rates of transition and transversion. The recip-

rocal of this distance is used as a weight for each sequence
and these are again normalized to give a mean of 1.0. This
weighting scheme has the effect of upweighting sequences
more similar to the sequence being added relative to those
that are more distantly related. The upweighting effect in-
creases as the sequences become more similar to the se-
quence being aligned. The third scheme is a combination of
these weighting schemes, in which the weight derived for
each sequence based on branch lengths is multiplied by the
weight derived from sequence identities, and the values are
again renormalized. This scheme is referred to as combina-
tion weights.

Table 1 shows the values given by the various weighting
schemes for the case shown in the example tree in Figure 1.
The tree-based weights are independent of the new sequence
that is to be added, being derived wholly from the structure
of the existing data. Weights are calculated using the method
of Thompson et al. (1994b), which are then renormalized to
give a mean of 1, leaving the values shown. The identity-
based weights are derived by taking the distance of each se-
quence in the tree from the new sequence, defined as the
mean number of differences per aligned pair of residues, ig-
noring any pairs with a gap in either sequence. The recipro-
cals of these values are renormalized around 1 to give the
figures shown. For the final set of combination weights, the
product is taken of the weights in each of the preceding col-
umns and again renormalized to give a mean of 1.
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Table 1. The weights assigned to the sequences in the test tree shown in Figure 1 when the sequences Mus musculus and Plasmodium gallinaceae were added

a b c d e f

Ammonia beccarii 1.000 0.746 0.273 1.256 0.379 0.991
Caenorhabditis elegans 1.000 0.974 0.289 1.008 0.522 1.038
Dictyostelium discoideum 1.000 0.875 0.250 1.049 0.406 0.968

Drosophila melanogaster 1.000 0.727 0.349 1.054 0.470 0.809
Entamoeba histolytica 1.000 1.194 0.225 0.984 0.500 1.241

Euglena gracilis 1.000 1.519 0.198 0.809 0.557 1.298
Giardia sp. 1.000 1.340 0.193 0.773 0.481 1.094
Hexamita sp. 1.000 1.266 0.206 0.854 0.484 1.141

Homo sapiens 1.000 0.411 10.628 1.053 8.088 0.456
Naegleria gruberi 1.000 1.212 0.204 0.942 0.459 1.205
Oryza sativa 1.000 0.511 0.390 1.235 0.370 0.667

Physarum polycephalum 1.000 1.435 0.205 0.856 0.547 1.298
Saccharomyces cerevisiae 1.000 0.516 0.377 1.302 0.361 0.708

Trypanosoma brucei 1.000 1.488 0.211 0.846 0.583 1.329
Vahlkampfia lobospinosa 1.000 1.398 0.196 0.889 0.508 1.313
Xenopus laevis 1.000 0.383 1.798 1.082 1.278 0.438

Columns represent the following schemes: (a) equal sequence weights, (b) tree-based sequence weights, (c) identity-derived weights for each sequence for the
alignment of Mus musculus, (d) identity-derived sequence weights for each sequence for the alignment of Plasmodium gallinaceae, (e) combination of tree and
identity-derived weights for Mus musculus, (f) combination of tree and identity-derived weights for Plasmodium gallinaceae

For each of the three defined weighting schemes and the
default of equal weights, alignments were generated using
position-specific gap-opening penalties across the range of
gap extension penalties and base gap opening penalties de-
scribed above. This procedure was repeated for each of the
test sequences. The number of residues correctly placed in
each alignment was determined by comparison with the se-
quence as originally aligned in the reference alignment, and
this was then divided by the total number of residues in the
sequence to give a percentage score for the alignment. From
the scores for the alignments across the range of gap opening
and gap extension penalties for each test case, the gap pen-
alties giving the best performance across all or most of the
test cases were obtained.

Implementation

Programs were developed and/or run on DEC Alpha
workstations running DEC UNIX. All new code was written
in the C programming language and is freely available by
anonymous FTP (login as anonymous to chah.ucc.ie and
transfer the compressed tar archive PRNAA.tar). The code
is not designed for portability and users will have to down
load their own rRNA alignments and build their own pro-
files; a JAVA version of the programs is being developed
which will be used to provide future access to all the methods
via the Internet.

Results

The performance of a set of weights was judged by its effi-
cacy across the range of gap opening and gap extension pen-
alties used. The peak score and the range of gap penalties
giving a comparable score were taken into account in making
this judgement (Table 2). For scoring purposes, each residue
is counted as distinct, and is only considered correctly
aligned if it is in the same position as the same residue in the
reference sequence. The score for a sequence is counted as
the percentage of the total number of residues in the sequence
that have been correctly realigned.

The main results are presented in Table 2. In the first col-
umn, the percentage accuracy of alignment scores are given
for each of the 16 test cases. These scores are the best ob-
tained across the range of gap opening and extension pen-
alties with no sequence weights. The scores are low and
range from 43% (Euglena) up to 88% (Oryza). The addition
of position specific gap penalties has a dramatic effect. The
scores all increase by about 10–15% which represents an im-
provement of several hundred residues in the original se-
quences that have been correctly aligned. The use of se-
quence weights yields further improvements, although not as
dramatically as this. It should be noted that an improvement
in score of just 1% is the equivalent of 20 residues in a mol-
ecule of 2000 nucleotides. We only give the peak scores from
across the full range of gap opening and extension penalties.
These were all obtained with a gap opening penalty of be-
tween 5.0 and 7.0 and a gap extension penalty of either 0.1
or 0.2.
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Table 2.The highest % identity between the reference alignment and the realigned sequence obtained using each of the weighting schemes

a b c d e

A.beccarii 71.65 84.19 83.66 84.05 83.96

C.elegans 69.26 83.98 83.98 86.99 87.84

D.discoideum 64.42 78.95 78.95 79.59 79.06

D.melanogaster 70.14 82.72 82.97 81.11 84.02

E.histolytica 55.68 73.50 74.83 75.04 78.17

E.gracilis 43.12 60.22 60.22 60.22 61.08

Giardia sp. 55.00 73.89 73.96 76.81 77.29

Hexamita sp. 56.13 73.10 73.61 78.39 77.16

H.sapiens 79.88 91.01 92.88 91.49 92.30

N.gruberi 50.37 63.60 63.74 67.81 67.86

O.sativa 88.85 97.08 97.13 96.69 97.35

P.polycephalum 53.62 65.02 64.66 68.64 67.52

S.cerevisiae 86.71 93.94 94.55 93.38 94.10

T.brucei 47.62 62.86 63.39 64.77 65.04

V.lobospinosa 46.23 56.20 55.69 56.20 58.96

X.laevis 82.47 93.59 95.18 94.25 95.07

(a) Fixed gap penalties and equal sequence weights, (b) position-specific gap penalties and equal sequence weights, (c) position-specific gap penalties and identity
based weights, (d) position-specific gap penalties and tree-based weights, (e) position-specific gap penalties and combination weights. The underlined values
are the absolute maximum scores obtained for each sequence

Table 3. Alignment percentage accuracy scores for various weighting schemes and gap penalties

Gap extension
penalty

Trypanosoma brucei
gap opening penalty

Vahlkampfia lobospinosa
gap opening penalty

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

(a)

0.1 46 47 47 47 47 47 47 47 47 45 46 46 46 46 46 46 46 46

0.2 32 32 33 33 33 33 33 33 33 31 33 32 32 32 32 32 32 32

0.3 16 17 17 17 16 16 16 16 16 17 16 16 16 16 16 16 16 16

0.4 13 12 12 12 12 12 12 12 12 10 12 12 12 12 12 12 12 12

0.5 4 4 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6

0.6 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5

0.7 2 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4

0.8 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3

0.9 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3

(b)

0.1 58 59 60 62 62 61 61 61 61 51 53 55 56 56 56 56 56 56

0.2 58 59 61 62 62 62 62 62 62 50 53 54 55 55 55 55 55 55

0.3 59 60 62 63 63 63 63 63 63 51 53 55 55 55 55 55 55 55

0.4 58 59 60 61 63 63 63 63 63 51 54 54 55 55 55 55 55 55

0.5 58 59 60 61 63 63 63 63 63 51 53 54 55 55 55 55 55 55

0.6 58 59 61 62 63 63 63 63 63 51 53 54 55 55 55 55 55 55

0.7 58 60 61 62 62 62 62 62 62 52 53 54 55 55 55 55 55 55

0.8 57 60 61 62 62 62 62 62 62 51 54 54 55 55 55 55 55 55

0.9 57 60 61 62 61 61 61 61 61 51 54 54 55 55 55 55 55 55

Cont....
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Table 3. Continued

Gap extension
penalty

Trypanosoma brucei
gap opening penalty

Vahlkampfia lobospinosa
gap opening penalty

(c)

0.1 58 59 60 62 62 61 61 61 61 51 53 55 56 56 56 56 56 56

0.2 59 59 61 62 62 62 62 62 62 50 53 54 55 55 55 55 55 55

0.3 59 60 62 63 63 63 62 62 62 51 53 54 55 55 55 55 55 55

0.4 58 58 60 61 63 63 62 62 62 51 54 54 55 55 55 55 55 55

0.5 58 59 60 61 63 63 62 62 62 51 54 54 55 55 55 55 55 55

0.6 58 59 61 61 63 63 63 63 63 51 53 54 55 55 55 55 55 55

0.7 58 60 61 62 62 62 62 62 62 52 53 54 55 55 55 55 55 55

0.8 57 60 61 62 62 62 61 61 61 51 54 54 55 55 55 55 55 55

0.9 57 60 61 62 62 62 61 61 61 51 54 54 55 55 55 55 55 55

(d)

0.1 62 63 65 65 64 64 64 64 64 51 53 55 56 56 56 56 56 56

0.2 61 63 64 64 64 64 64 64 64 50 53 54 55 55 55 55 55 55

0.3 60 63 63 64 64 64 64 64 64 51 53 55 55 55 55 55 55 55

0.4 61 62 63 64 64 64 64 64 64 51 54 55 55 55 55 55 55 55

0.5 60 61 62 64 64 64 64 64 64 51 53 54 55 55 55 55 55 55

0.6 59 61 62 63 63 63 63 63 63 51 53 54 55 55 55 55 55 55

0.7 59 61 61 62 61 61 61 61 61 52 53 54 55 55 55 55 55 55

0.8 59 61 61 62 61 61 61 61 61 51 54 54 55 55 55 55 55 55

0.9 59 61 61 61 61 61 61 61 61 51 54 54 55 55 55 55 55 55

(e)

0.1 62 64 64 65 65 65 65 65 65 56 58 58 58 58 58 58 58 58

0.2 60 62 63 64 64 64 64 63 63 56 57 58 58 58 58 58 58 58

0.3 61 62 63 64 64 64 64 64 64 55 57 57 57 57 57 57 57 57

0.4 60 62 62 64 64 64 64 64 64 55 57 57 57 57 57 57 57 57

0.5 60 60 62 63 64 64 64 64 64 55 57 58  58 58 58 58 58 58

0.6 59 61 63 63 63 62 62 63 63 55 57 57 57 57 57 57 57 57

0.7 59 61 62 63 63 63 63 63 63 55 58 58 58 58 58 58 58 58

0.8 59 61 62 62 62 62 62 62 62 55 57 57 57 57 57 57 57 57

0.9 59 62 62 62 62 62 62 62 62 55 57 57 57 57 57 57 57 57

Italics represent those regions at or above the highest score attainable with equal sequence weights. Underlining represents the highest score attained across all
the different parameters. Parameter sets are: (a) fixed gap penalties and equal sequence weights, (b) position-specific gap penalties and equal sequence weights,
(c) position-specific gap penalties and identity based sequence weights, (d) position-specific gap penalties and tree-derived sequence weights, (e) position-spe-
cific gap penalties and weights derived from combination of tree-based and identity-based weights.

In nine out of the 16 test cases, the single best alignment
score generated across the ranges of gap penalties was ob-
tained using the combined weights (the last column of Table
2). In three of the remaining cases, tree-based weights give
the best performance (column c). The identity weights give
the highest score in three cases, and Ammonia beccarii is
aligned most accurately with equal weights. Both identity-
based and tree-based methods of sequence weighting are
shown to improve over equal weights in most cases, with the
combination of both these weights giving the best overall
performance.

Two examples are shown in detail in Table 3. Here the
scores for all values of gap opening and gap extension pen-
alties are given for each weighting scheme for just two of the

test cases: Vahlkampfia lobospinosa and Trypanosoma brucei.
In both cases, the results with uniform gap penalties, shown
in row (a), are very poor and depend strongly on the exact
value of the parameters. There is a huge improvement in row
(b) where the values for position specific gap penalties are
shown. Here, the values are much higher than in row (a) and
there is almost no dependence on the exact values chosen for
the gap penalties. In the case of Vahlkampfia there is no notice-
able difference between the use of tree-based or identity-based
weights [the results are shown in rows (c), (d) and (b)]. Use
of the combined weighting scheme, as seen in row (e), gives
a consistent improvement, showing increase of 2% across the
entire range of gap penalties. In the case of Trypanosoma the
relative performance of each weighting scheme is more dis-
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tinct. In comparing identity weights to equal weights in this
case, there is improvement for some values of gap penalty.
The effect of using tree-based weights is to produce improve-
ment across a larger range of gap penalties, particularly for
gap extension penalties <0.3. The combination of the two
weighting schemes again shows a synergistic effect, with a
further increase visible across the range of gap penalties.

The values of gap opening and gap extension penalties giv-
ing the maximum scores for each test case are given in Table
4. These are the optimum parameters when using the com-
bined weighting scheme with position specific gap penalties.
They all fall in a very narrow range.

Table 4. Gap opening and extension penalties giving optimum alignment
scores for each test case using combined weights

Gap opening Gap extension

A.beccarii 6.0 0.2

C.elegans 6.0 0.1

D.discoideum 6.0 0.1

D. melanogaster 5.0 0.2

E.histolytica 6.0 0.1

E.gracilis 6.0 0.1

Giardia sp. 7.0 0.1

Hexamita sp. 5.0 0.2

H.sapiens 6.0 0.1

N.gruberii 6.0 0.1

O.sativa 6.0 0.1

P.polycephalum 6.0 0.2

S.cerevisiae 6.0 0.2

T.brucei 6.0 0.1

V.lobospinosa 6.0 0.1

X.laevis 6.0 0.2

In order to tell which sections of the reference alignment
may be reliably aligned, each of the 1517 sequences in turn
was removed from the alignment and re-aligned with the re-
maining sequences. Each column of the original, reference
alignment was scored depending on what percentage of the
residues in it can be realigned in the correct positions. Figure
2 shows the estimated secondary structure of the Saccharo-
myces cerevisiae nuclear SSU rRNA with those positions
from the full alignment which can be realigned with ≥95%
accuracy marked in black and those which realign with
<95% accuracy in grey. Stems forming pseudoknots are not
displayed in this representation. This is a conservative esti-
mate of the regions that may be reliably aligned as there are
some positions that are not found in this molecule and se-
quences from some taxonomic groupings may be aligned al-
most perfectly.

Figure 3 shows the accuracy with which each sequence can
be realigned compared to its original alignment as a function
of G+C content. The re-alignment accuracy is greatest for

sequences with average G+C contents (∼50%). As expected,
sequences with extreme nucleotide compositions (very high
or very low G+C content) tend to be less easy to align accu-
rately. High levels of a particular nucleotide increase the
chance that a residue in the sequence being aligned may align
with the wrong column in the profile. The test cases cover a
range of G+C content from 38.4% (Entamoeba histolytica)
to 68.5% (Giardia sp.).

Discussion

The generation of alignments under various parameters
shows that position-specific gap opening penalties have a
very strong positive effect on the accuracy with which align-
ments can be generated. Fixed gap penalties perform ex-
tremely poorly, particularly at high values of gap extension
penalty. This corresponds to situations in which the long gaps
that occur in virtually all sequences in certain regions of the
alignment, which correspond to long insertions in a few se-
quences, are penalized very heavily and do not occur in an
alignment giving an optimum score. Experimentation with
position-specific gap extension penalties did not give any
further improvement.

Sequence weighting can have a further positive effect on
alignment quality. Both weighting schemes based on se-
quence identity and those based on the tree structure and
branch lengths are seen to have generally positive effects. As
expected, the tree-based weights are seen to perform at their
best in the case of sequences which are quite distant from the
main taxa, with few or no close relatives, such as Hexamita,
and to be of least benefit to alignment quality with sequences
which have many close relatives such as O.sativa. With
identity-based weights the greatest positive effects are seen
in sequences within highly represented taxa such as S.cerevi-
siae.

These two weighting schemes have opposing effects on
the values of the sequence weights in the case of sequences
aligning into densely populated regions of the tree, and so the
net result of combining them, in cases such as S.cerevisiae,
may not perform any better than either of the weighting
schemes used individually. The examples given (Table 3)
indicate that there are cases where tree-based and identity-
based weights show a synergistic effect when combined, the
combination outperforming either of the schemes applied
individually. The combined weights give the best result in
more than half of the test cases, and the average difference
between the score generated with the combined weights and
the overall best score is substantially less than the difference
between the scores from any of the other weighting schemes
and the overall best score in each case. This synergy is seen
to occur most strongly in sequences which are distant from
the main bulk of the alignment and therefore more difficult
to align correctly. Those which are located in highly repre-
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Fig. 2. Secondary structure of Saccharomyces cerevisiae SSU rRNA with stable regions indicated in black., generated using the ESSA program
(Chetouani et al., 1997).
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Fig. 3. Graph of percentage of sequence correctly re-aligned against G+C content for each of the 1517 sequences in the reference alignment.

sented taxa do not show such strong effects from any of the
weighting schemes, but these tend to be those sequences
which have the best alignments initially.

We have shown how to improve the accuracy of alignment
of rRNA sequences using some simple methods. It is quite
possible that alignments of 100% accuracy will not be poss-
ible due to the existence of errors introduced manually into
the reference alignment. Nonetheless, we can already see
that some sequences may be aligned with >95% accuracy
(Oryza and Xenopus), and across the entirety of the align-
ment 89.84% of all residues can be realigned correctly. Some
sequences are still disappointing and this can partially be ex-
plained by very biased G+C content (e.g. Giardia). Others
come from poorly sampled parts of the overall Eukaryote
phylogenetic tree and these will become easier to align as
new sequences are added. Nonetheless, it may be difficult for
users to evaluate the quality of a new alignment. We provide
one, extremely simple method for choosing regions of the
overall alignment that can be reliably aligned in almost all
cases. This covers about half of the positions in any given
molecule and provides a selection of sites which can be relia-
bly chosen for phylogenetic purposes. This site selection can
be fine-tuned by looking at regions which may be reliably
aligned in specific taxa.

Finally, it is very obvious that these methods could benefit
from some consideration of secondary structure, which

could be used for evaluation of alignments or as part of the
alignment process. We are investigating the use of genetic
algorithms to optimize the quality of profile alignments
where secondary structure is considered (Notredame et al.,
1997). We will use a genetic algorithm to optimize the quality
function of Corpet and Michot (1994) but based on profiles
rather than pairs of sequences.
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