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computer power to construct. Worse

still, the computer requirements

grow exponentially with the number

of sequences.

The main solution has been to use

what is often called ‘progressive

alignment’, which is a short-cut

approach that builds the alignment

up gradually. The process involves

making a quick and approximate

phylogenetic tree and then adding

the sequences together two at a time

initially, using dynamic program-

ming at each step. An early version of

this was described by Willie Taylor in

London1, and it has become the stan-

dard method for doing this ever

since, with the Clustal series of pro-

grams being especially popular2.

These methods have the advantage of

being particularly fast, and huge

alignments can be constructed

quickly. Of greater importance, the

alignments are accurate enough to be

used automatically for many applica-

tions. There is a snag, however, in

that the methods do fall down in very

difficult situations, such as when you

have very long insertions or dele-

tions, or when the sequences have

diverged too much.

One approach that has worked

especially well in many areas of

bioinformatics has been to use hidden

Markov models (HMMs), developed

In Figure 1, we show a multiple

sequence alignment of a small set of

diverse globins. These sequences

have changed considerably since they

diverged from each other, but they

are still alignable — just. Due to

insertions and deletions, as well as

amino acid substitutions, you need to

place gaps in some of the sequences

so as to try to maintain the alignment

of equivalent residues. The number

of possible gap placements in even 

a small set of sequences like this is

simply enormous and designing

automatic methods for doing this

presented considerable problems

when first attempted in the 1970s 

and 1980s. The obvious thing to try

was to extend the famous ‘dynamic

programming’ methods that were

applied to the two-sequence align-

ment problem. These methods are

still widely used, and are guaranteed

to give the best possible alignment if

you give scores for all possible amino

acid matches and mismatches, and

scores for gaps of different lengths.

You can certainly extend these meth-

ods to seven or more sequences and

the alignments are of high quality,

but they take colossal amounts of

initially for speech recognition. These

were applied to multiple alignments

in the early 1990s, but the quality of

the alignments proved to be disap-

pointing. This was despite the clear

power of HMMs in other areas of

bioinformatics, and also despite the

clear mathematical rigour which can

be applied to this approach. A second

approach that was more successful

was developed by Cedric Notredame

and colleagues3 and resulted in the T-

Coffee computer program. This

approach used progressive alignment,

but attempted to find the alignment

that was most similar to a ‘library’ of

aligned pairs of sequences. This

library was generated from normal

fast pairwise alignments, but could

also, in principle, be derived from

other sources of information such as

three-dimensional structures. Most

importantly, the alignments were

very accurate, as measured on sets of

test cases.

In this review, we wish to draw

attention to three recently published

multiple alignment programs. The

first (3-DCoffee4) is a version of T-

Coffee, designed explicitly to align

sequences and structures. The sec-

ond (MUSCLE - Multiple Sequence

Comparison by Log Expectation5) is

a turbo-charged version of progres-

sive alignment that delivers very

high quality alignments very

quickly. Finally, we have ProbCons6,

which is a way of applying the T-

Coffee algorithm, but using proba-

bilities instead of simple scores and
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from Figure 1, and, clearly, these are

very easy to match up when you use

the structures. Such structural infor-

mation is clearly important and use-

ful, but it is not necessarily easy to

exploit in simple multiple alignment

programs. Various complex packages

and algorithms have been developed

that can mix sequences and structures

in alignments, ranging from full 

multiple structure superpositions 

to sequence/structure threaders 

and aligners.

Here, we wish to draw your atten-

tion to a fast, simple and accurate way

to incorporate structures in an align-

ment, and to derive an improvement

in overall alignment accuracy, even

when you only have one or two

structures available. The method

exploits the ability of the T-Coffee

alignment program to incorporate

heterogeneous alignment informa-

tion. T-Coffee, by default, generates

pairs of sequence alignments between

all of the input sequences and finds a

multiple alignment that is most com-

patible with these. If you have one

structure, you could, in principle,

match each sequence to the structure,

using HMMs after all, but in this

case to generate the initial align-

ments and residue–residue weights.

This program now looks like it is the

most accurate method yet.

3-D Coffee

3-D Coffee is a computer program

for making multiple alignments of

protein sequences that incorporate

structural information from three-

dimensional structures, when any

structures exist. It is a common

occurrence to have a set of sequences

that one wishes to align, and to have

one or two structures available. In

principle, you can align very distantly

related sequences when you know 

the three-dimensional structures of

all of them because you can see which

structural elements (�-helices and 

�-strands) align with which, even

when the sequences have diverged

well into the twilight zone. The latter

is the situation where the amino acid

sequences are less than 25% identical

and therefore difficult to align. In

Figure 2, we have the structures 

corresponding to the globin example

Figure 1. A multiple

alignment of seven diverse

globin sequences. These

have been aligned using

ClustalW and the

approximate locations 

of the �-helices, common

to all of them, are 

shown in red.

using a threading package and con-

vert the output of each threading into

a two-sequence alignment. These

two-sequence alignments contain

information about how the structure

aligns to each sequence, and, indi-

rectly, how the sequences align to

each other. These alignments can be

fed into T-Coffee, and if you do this,

the accuracy of the multiple align-

ments increases.

The difficulty is that many

threading packages are difficult to

install or have heavy computational

requirements. 3-DCoffee does all of

this for you automatically. It uses

the FUGUE7 package, which carries

out sequence alignment by dynamic

programming, but by using infor-

mation about local features of the

structure. You do not even have to

have FUGUE installed, as the pro-

gram will take your structure and a

sequence, and will pass these to the

FUGUE server and will request an

alignment before collecting the

results and incorporating them

automatically. All you need is a

connection to the Internet, a copy

of 3-DCoffee and some sequences,
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Human �-globin    --------VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYPWTQRFFESFGDLST
Horse �-globin    --------VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYPWTQRFFDSFGDLSN
Human �-globin    ---------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF-DLS-
Horse �-globin    ---------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHF-DLS-
Whale myoglobin   ---------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT
Lamprey globin    PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT
Lupin globin      --------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE

*:  :   : *  .         :  .:  * :  * :  .

Human �-globin    PDAVMGNPKVKAHGKKVLGAFSDGLAHLDN-----LKGTFATLSELHCDKLHVDPENFRL
Horse �-globin    PGAVMGNPKVKAHGKKVLHSFGEGVHHLDN-----LKGTFAALSELHCDKLHVDPENFRL
Human �-globin    ----HGSAQVKGHGKKVADALTNAVAHVDD-----MPNALSALSDLHAHKLRVDPVNFKL
Horse �-globin    ----HGSAQVKAHGKKVGDALTLAVGHLDD-----LPGALSNLSDLHAHKLRVDPVNFKL
Whale myoglobin   EAEMKASEDLKKHGVTVLTALGAILKKKGH-----HEAELKPLAQSHATKHKIPIKYLEF
Lamprey globin    ADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKLRDLSGKHAKSFQVDPQYFKV
Lupin globin      VP--QNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKGVAD-AHFPV

. .:: *. :  .                :  *.  *  .      : .

Human �-globin    LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH------
Horse �-globin    LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH------
Human �-globin    LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------
Horse �-globin    LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR------
Whale myoglobin   ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
Lamprey globin    LAAVIADTVAAG---D------AGFEKLMSMICILLRSAY-------
Lupin globin      VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---

:  :  .:     .    ..     .  :
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Initially, the goal is to rapidly

generate a rough draft of the align-

ment, emphasizing speed over accu-

racy. Crude evolutionary distances

between pairs of input sequences

are estimated by k-mer or k-tuple

(short exact matches of fixed

length) counting using a com-

pressed alphabet. The 20 standard

amino acids are divided into seven

subgroups sharing biochemical sim-

ilarity. These distances are clustered

to give an initial tree, which is then

used to construct a progressive

alignment between the sequences.

At each stage of the progressive

alignment, groups of sequences

(profiles) are aligned. One impor-

tant improvement with MUSCLE is

to use the Log Expectation (LE)

score, which has been shown to out-

perform other functions in cor-

rectly aligning pairs of columns:

LExy = (1–f x
G) (1–f y

G)log�
i
�
j
f x

i f y
j  

Pij

PiPj

In this function, i and j are dif-

ferent amino acid types, Pi is the

background probability of i, Pij is

the joint probability of i and j being

aligned. fi
x is the observed fre-

quency of amino acid type i in col-

umn x of the first profile, fG
x is the

observed frequency of gaps at that

column (similarly for column y in

profile 2). The factor (1- fG
x) encour-

ages more highly occupied columns

to align to each other.

The next stage in the process

attempts to refine the rough draft.

A second tree is constructed, this

time using a more sophisticated dis-

tance model, which is more accu-

rate, but needs an alignment as

input. A second progressive align-

ment is generated using this refined

tree. For added speed, new pairwise

profile alignments are calculated

only for those sub-trees that

changed relative to the initial tree.

including at least one with a struc-

ture in the Protein Data Bank

(PDB). If installing the package

locally scares you off, you can just

use the 3-DCoffee server and do

everything online.

If you have two or more struc-

tures, these can also be matched using

a full structure superposition pack-

age, such as SAP8. The more struc-

tures you include, the better (more

accurate) will be your alignments.

Furthermore, you are not restricted

to using just SAP and FUGUE

(though the 3-DCoffee server uses

these programs by default). You can

use any outside software that can

convert a pair of structures or a

sequence and a structure into an

alignment or a set of alignments.

MUSCLE

A major issue in alignment program

development has been the trade off

between alignment accuracy and

computational complexity. Up

until this year, the most accurate

method was T-Coffee. A further

advantage of T-Coffee was its abil-

ity to combine data from hetero-

geneous sources (as described

above for structures). Nonetheless,

ClustalW continues to be

extremely popular, partly due to its

numerous interface features and

menu options, but also partly

because it is much faster than T-

Coffee, especially if you try to align

more than 50 sequences.

MUSCLE is a new multiple

sequence alignment package that is

extremely fast, indeed faster than

ClustalW, but which also delivers

alignments as accurate as T-Coffee.

It is a progressive alignment pro-

gram, but it is very highly opti-

mized for speed, and uses a neat

profile-to-profile alignment

method to deliver accuracy.

Figure 2. A multiple

structure superposition 

of the structures

corresponding to the

sequences in Figure 1.

These have been

superimposed using the

VAST algorithm and

displayed using Cn3D,

both available at

http://www.ncbi.nlm.nih.gov

/Structure/. The �-helices

are shown as spirals of

different colour.

An iteration step is included 

to improve the alignment quality

further. Within the tree, an edge

connects two sub-trees; in order of

decreasing distance from the root,

each edge is visited and deleted,

splitting the tree in two. The pro-

files of these two sub-trees are

realigned. If the alignment score is

improved, the alignment is kept,

otherwise it is discarded. This step

can be repeated until no further

improvements can be made.

During development, MUSCLE

was assessed using several alignment

databases, including the BAliBASE9

benchmark, on which it achieved the

highest ranking of any method at the

time of publication.

On a typical PC, T-Coffee is

unable to align more than 100 typi-

cal length sequences, while

ClustalW can easily manage hun-

dreds. Beyond this, however, the

computational complexity becomes

increasingly prohibitive. The

largest analysis described for 

MUSCLE, contained 5000 com-

puter-generated sequences; MUS-

CLE was able to complete the task

in 7 minutes (if the iteration step

was ignored), while it was esti-

mated that for ClustalW, if left run-

ning continuously, a full year

would have been required.
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able to calculate the posterior proba-

bility, P(xi~yj|x,y) for each pair of

amino acids. This is the probability

that residue i in sequence x is matched

with residue j in sequence y in the

final alignment. At this stage, the

expected accuracy of each pairwise

alignment is also calculated, which is

defined as the sum of the posterior

probabilities for each alignment.

The second step is to calculate the

probabilistic consistency (hence the

name of the program). If a third

homologous sequence, z, is avail-

able, a better estimate of the pos-

terior probability of P(xi~yj) can be

obtained using the information

about how x and y align with z. This

is defined as P(xi~yj|x,y,z) and may

be calculated using a three sequence

HMM, but that would be an O(L3)

calculation. A cubic running time

was considered undesirable, so the

following heuristic was imple-

mented which can be solved in

approximately constant time:

P(xi�yj x,y,z)��
k
P(xi�zk|x,z)P(yj�zk|y,z)

The multiple alignment is gener-

ated by using a progressive align-

ment scheme. The guide tree is

calculated by clustering the

sequences based on their expected

accuracy. Sub-alignments are com-

bined using a sum-of-pairs scheme,

in which the score of the multiple

alignment is calculated by summing

all posterior probabilities for all

pairs of sequences present. The final

alignment is then subjected to an

iterative refinement protocol. The

alignment is randomly split into two

ProbCons

T-Coffee derives some of its accuracy

from its ability to take alignment

information from mixtures of input

alignments. It derives further accu-

racy from a consistency step where

the input aligned pairs of amino acids

are compared with each other. Pairs

of aligned residues that agree or are

consistent with other pairs get up-

weighted. The weights that are used

are simple scores, related to the simi-

larity of the parent sequences that the

pairs come from. ProbCons, uses a

very similar approach, but with one

major difference: the scores that

determine which pairs of amino acids

should be aligned are probabilities.

The probabilities are generated as the

posterior alignment probabilities

from pairwise HMMs. Furthermore,

the up-weighting of consistent pairs

of amino acids is now done by multi-

plying these posterior probabilities.

After this, ProbCons, aligns the

sequences using progressive align-

ment, just as in T-Coffee. ProbCons

is now the most accurate multiple

alignment method as benchmarked

using BAliBASE. In their paper, Do

et al.6 show that ProbCons performs

best in all five of the reference sets

that make up BAliBASE. It also 

finds the unique best alignment in

46.1% of the BAliBASE cases, as

well as the joint best alignment in

66.7% of the cases.

The first step in the ProbCons

algorithm is to align all of the

sequences with each other using a

pair-HMM. By modelling an align-

ment as a pair-HMM, Do et al.6 were

groups and realigned. This is

repeated 100 times.

All of these packages are 

available online and/or can be

downloaded for local use. The

URLs are given in Table 1.
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Table 1. URLs for multiple alignment packages
3-DCoffee http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi

MUSCLE http://www.drive5.com/muscle/

ProbCons http://probcons.stanford.edu/

FUGUE http://www-cryst.bioc.cam.ac.uk/fugue/

ClustalW http://www.ebi.ac.uk/clustalw/
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